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Abstract—We divert from popular practice by describing a
motion of a macroscopic body, a hydrogen atom in this case,
through quantum mechanics. What we realise is that a body
can follow a curved path, without any external force acting on it,
which is in contrast to Newtonian mechanics. To test the idea, we
determine a formula for G, the universal gravitational constant.
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I. INTRODUCTION

ISAAC Newton (1643–1727) proposed centuries ago, in
what has become known as his first law of motion, that

a body will remain at rest, or remain in a state of motion, in
a straight line, unless acted upon by an external unbalanced
force. We disagree.

Our view is that a body can follow a curved path, without
any force acting on it, and the evidence thereof is in plain
sight. One example is the gyroscope. The other is the concept
upon which boomerangs operate by. One other is a trick skilful
soccer players use to confuse opponents. What we do here
is explain the common underlying motion through quantum
super-positions and entanglements. This we do by solving the
two-dimensional Schrödinger equation for a hydrogen atom,
because of its simplicity: Not many particles are involved. We
choose the two-dimensional space, because curve of motion is
in a plane.

We had hoped to solve the equations through Sophus Lie’s
symmetry group theoretical methods, unfortunately the pure
approach does not allow for super-positions. To circumvent
this, we introduce what we call modified Lie symmetries, or
simply modified symmetries. We use two concepts to evaluate
the resulting integrals. The first makes use of intermediate
value theorems, and the second is on differentiable topological
manifolds.

II. THE GORVENING EQUATIONS OF MOTION

The Schrödinger wave equation for the hydrogen atom with
electron mass me and proton mass mp has the form
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Here ψ = ψ(t, r,R) is the probability density function, V is
the potential, E is the energy level, r = (x, y, z) is the position
of the electron, R = (X,Y, Z) is that of the proton, and h̄ is
the reduced Planck constant.

Our interest is in the motion of the electron and proton
on the same plane. This reduces (1) to the two-dimensional
Schrödinger wave equation,
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Here ψ = ψ(t, r,R) is the probability density function, V is
the potential, E is the energy level, r = (x, y) is the position
of the electron, R = (X,Y ) is that of the proton.

Since the mass of the proton is much larger than that of the
proton, then the electron can be interpreted as moving around
around a positive core frozen in plavein the static potential
field V (R, r). This then splits (2) into
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where ψ = ϕ(t,R)φ(t, r). Equation (3) describes the motion
of a free particle, implying that the proton is moving freely.
Equation (4), on the other hand, is that of a forced particle.
A transition to polar coordinates of (3), wherein x = ρ cos θ
and y = ρ sin θ, gives

− h̄2

2mp

[
1

ρp

∂

∂ρp

(
ρ
∂

∂ρp

)
+

1

ρ2p

∂2

∂θ2p

]
ϕp = ih̄

∂ϕp

∂t
, (5)

Received: January 6, 2021. Revised: March 12, 2021. Accepted: March 22, 2021. Published: March 29, 2021.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION 
DOI: 10.46300/9102.2021.15.5 Volume 15, 2021

E-ISSN: 1998-0159 24



or
1

ρp

∂

∂ρp

(
ρ
∂ϕ

∂ρp

)
+

1

ρ2p

∂2ϕp

∂θ2p
=

2mp

ih̄

∂ϕ

∂t
. (6)

The substitution ϕ(t, ρ, θ) = P (t, ρ)Θ(t, θ) leads to
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Equation (4) separates into
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It is assumed that ∂φe/∂t = −iEφe/h̄. In the case of a
coulombic force, we have
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where ε0 is the permittivity of free space, q and Q are charges.

III. SOLVING (3), THE FREE PARTICLE WAVE EQUATION

Being able to solve the Schrödinger equation exactly, is the
key to particle states, their superpositions and entanglements.
These assist in the transition from classical to quantum com-
puting; allowing space for faster computers.

However, there are beliefs that this equation can be solved
exactly only for the simplest of systems, such as the particle in
a box problem, the Hydrogen atoms and the free particle, and
not for complex systems. While we may agree with Toli and
Zou [1] that that is the case and that multi-electron systems
may probably be unsolvable, we argue here that even the
simplest case, the free particle, was not solved correctly.

As a precursor to exact solutions, we begin by first pointing
out the mis-steps. In literature, (3) is presented in the form
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and called the Airy-Laguerre-Gaussian equation. It models
the propagation of energy packets in free space. Here u =
u(ζ,R, ϕ, T ) is the complex envelope of the optical field, R =√
X2 + Y 2 = r/r0 is the dimensionless spatial coordinate,

T = t/t0 the retarded time, ζ = z/(kr20) is the longitudinal
propagation distance , k = 2πN/λ0 is the wave number, with
the wavelength λ0, refractive index N and ϕ the azimuthal
angle. The quantities r0 and t0 are scaling parameters.

Letting

u(ζ,R, ϕ, T ) = V (ζ,R)Φ(ϕ)P (ζ, T ), (13)

separates (12) into three simpler components. This has been
executed before, see [2], [3], [4], [5], [6], [7] and [8]. The
simplest is the azimuthal equation,
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The parameter m =
√
λ is called the azimuthal mode num-

ber, also known as the topological charge. Next is the 1D
Schrödinger equation,
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and the Laguerre-Scholes equation,
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It is thought that the azimuthal equation is solved by letting
φ = exp(λϕ). This gives φ = A exp(−iϕ) +B exp(iϕ), with
A and B as constants. This solution is incorrect.

IV. SOLVING (4), THE FORCED WAVE EQUATION

Letting ϕ = $(r) exp(iEt/h̄) reduces (4) to
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a time independent Schrödinger equation.
The substitution $ = R(r)Θ(θ)Φ(φ) reduces it to
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In the case of a coulombic force, we have
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where ε0 is the permittivity of free space, q and Q are charges,
r = ||r|| is the relative distance and the position s of the
hydrogen atom is given by its centre of mass:

s =
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me +mp
. (22)

The third equation is
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A. Solutions through differentiable Manifolds

V. CONCLUSION

Newtonian mechanics has led to great results and a vast
number of technological applications. Unfortunately, a number
of confusing concepts have also resulted. Dark matter and
energy is one of such concepts. In our view, this results when
people have absolute belief and trust in a theory. Our sugges-
tion that motion along a curved path is possible without an
external force, will greatly assist in addressing the confusion.
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